A non-abelian Seiberg–Witten invariant for integral homology 3–spheres
نویسندگان
چکیده
منابع مشابه
A Unified Witten-reshetikhin-turaev Invariant for Integral Homology Spheres
We construct an invariant JM of integral homology spheres M with values in a completion Ẑ[q] of the polynomial ring Z[q] such that the evaluation at each root of unity ζ gives the the SU(2) Witten-ReshetikhinTuraev invariant τζ(M) of M at ζ. Thus JM unifies all the SU(2) WittenReshetikhin-Turaev invariants of M . As a consequence, τζ(M) is an algebraic integer. Moreover, it follows that τζ(M) a...
متن کاملNon-abelian Local Invariant Cycles
Let f be a degeneration of Kähler manifolds. The local invariant cycle theorem states that for a smooth fiber of the degeneration, any cohomology class, invariant under the monodromy action, rises from a global cohomology class. Instead of the classical cohomology, one may consider the non-abelian cohomology. This note demonstrates that the analogous non-abelian version of the local invariant c...
متن کاملnon-divisibility for abelian groups
Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...
متن کاملA Monopole Homology for Integral Homology 3-spheres
To an integral homology 3-sphere Y , we assign a well-defined Z-graded (monopole) homology MH∗(Y, Iη(Θ; η0)) whose construction in principle follows from the instanton Floer theory with the dependence of the spectral flow Iη(Θ; η0), where Θ is the unique U(1)-reducible monopole of the Seiberg-Witten equation on Y and η0 is a reference perturbation datum. The definition uses the moduli space of ...
متن کاملAn Invariant of Integral Homology 3-spheres Which Is Universal for All Finite Type Invariants
This edition: Dec. 29, 1995 Abstract. In [LMO] a 3-manifold invariant Ω(M) is constructed using a modification of the Kontsevich integral and the Kirby calculus. The invariant Ω takes values in a graded Hopf algebra of Feynman 3-valent graphs. Here we show that for homology 3-spheres the invariant Ω is universal for all finite type invariants, i.e. Ωn is an invariant order 3n which dominates al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2003
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2003.7.965